[Beta] Fine-tuning API
This is an Enterprise only endpoint Get Started with Enterprise here
Supported Providers
- Azure OpenAI
- OpenAI
- Vertex AI
Add finetune_settings
and files_settings
to your litellm config.yaml to use the fine-tuning endpoints.
Example config.yaml for finetune_settings
and files_settings
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
# For /fine_tuning/jobs endpoints
finetune_settings:
- custom_llm_provider: azure
api_base: https://exampleopenaiendpoint-production.up.railway.app
api_key: os.environ/AZURE_API_KEY
api_version: "2023-03-15-preview"
- custom_llm_provider: openai
api_key: os.environ/OPENAI_API_KEY
- custom_llm_provider: "vertex_ai"
vertex_project: "adroit-crow-413218"
vertex_location: "us-central1"
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json"
# for /files endpoints
files_settings:
- custom_llm_provider: azure
api_base: https://exampleopenaiendpoint-production.up.railway.app
api_key: fake-key
api_version: "2023-03-15-preview"
- custom_llm_provider: openai
api_key: os.environ/OPENAI_API_KEY
Create File for fine-tuning
- OpenAI Python SDK
- curl
client = AsyncOpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000") # base_url is your litellm proxy url
file_name = "openai_batch_completions.jsonl"
response = await client.files.create(
extra_body={"custom_llm_provider": "azure"}, # tell litellm proxy which provider to use
file=open(file_name, "rb"),
purpose="fine-tune",
)
curl http://localhost:4000/v1/files \
-H "Authorization: Bearer sk-1234" \
-F purpose="batch" \
-F custom_llm_provider="azure"\
-F file="@mydata.jsonl"
Create fine-tuning job
- Azure OpenAI
- VertexAI
- OpenAI Python SDK
- curl
ft_job = await client.fine_tuning.jobs.create(
model="gpt-35-turbo-1106", # Azure OpenAI model you want to fine-tune
training_file="file-abc123", # file_id from create file response
extra_body={"custom_llm_provider": "azure"}, # tell litellm proxy which provider to use
)
curl http://localhost:4000/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"custom_llm_provider": "azure",
"model": "gpt-35-turbo-1106",
"training_file": "file-abc123"
}'
- OpenAI Python SDK
- curl (Unified API)
- curl (VertexAI API)
ft_job = await client.fine_tuning.jobs.create(
model="gemini-1.0-pro-002", # Vertex model you want to fine-tune
training_file="gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl", # file_id from create file response
extra_body={"custom_llm_provider": "vertex_ai"}, # tell litellm proxy which provider to use
)
curl http://localhost:4000/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"custom_llm_provider": "vertex_ai",
"model": "gemini-1.0-pro-002",
"training_file": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
}'
Use this to create Fine tuning Jobs in the Vertex AI API Format
curl http://localhost:4000/v1/projects/tuningJobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"baseModel": "gemini-1.0-pro-002",
"supervisedTuningSpec" : {
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
}
}'
Request Body
- Supported Params
- Example Request Body
model
Type: string
Required: Yes
The name of the model to fine-tunecustom_llm_provider
Type:
Literal["azure", "openai", "vertex_ai"]
Required: Yes The name of the model to fine-tune. You can select one of the supported providers
training_file
Type: string
Required: Yes
The ID of an uploaded file that contains training data.- See upload file for how to upload a file.
- Your dataset must be formatted as a JSONL file.
hyperparameters
Type: object
Required: No
The hyperparameters used for the fine-tuning job.Supported
hyperparameters
batch_size
Type: string or integer
Required: No
Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance.learning_rate_multiplier
Type: string or number
Required: No
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting.n_epochs
Type: string or integer
Required: No
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.suffix
Type: string or null
Required: No
Default: null
A string of up to 18 characters that will be added to your fine-tuned model name. Example: Asuffix
of "custom-model-name" would produce a model name likeft:gpt-4o-mini:openai:custom-model-name:7p4lURel
.validation_file
Type: string or null
Required: No
The ID of an uploaded file that contains validation data.- If provided, this data is used to generate validation metrics periodically during fine-tuning.
integrations
Type: array or null
Required: No
A list of integrations to enable for your fine-tuning job.seed
Type: integer or null
Required: No
The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases. If a seed is not specified, one will be generated for you.
{
"model": "gpt-4o-mini",
"training_file": "file-abcde12345",
"hyperparameters": {
"batch_size": 4,
"learning_rate_multiplier": 0.1,
"n_epochs": 3
},
"suffix": "custom-model-v1",
"validation_file": "file-fghij67890",
"seed": 42
}
Cancel fine-tuning job
- OpenAI Python SDK
- curl
# cancel specific fine tuning job
cancel_ft_job = await client.fine_tuning.jobs.cancel(
fine_tuning_job_id="123", # fine tuning job id
extra_body={"custom_llm_provider": "azure"}, # tell litellm proxy which provider to use
)
print("response from cancel ft job={}".format(cancel_ft_job))
curl -X POST http://localhost:4000/v1/fine_tuning/jobs/ftjob-abc123/cancel \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{"custom_llm_provider": "azure"}'
List fine-tuning jobs
- OpenAI Python SDK
- curl
list_ft_jobs = await client.fine_tuning.jobs.list(
extra_query={"custom_llm_provider": "azure"} # tell litellm proxy which provider to use
)
print("list of ft jobs={}".format(list_ft_jobs))
curl -X GET 'http://localhost:4000/v1/fine_tuning/jobs?custom_llm_provider=azure' \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234"